		mark		Sub
1(i)	$2000 = 1000a \text{ so } a = 2 \text{ so } 2 \text{ m s}^{-2}$	B1		
		M1	Use of appropriate <i>uvast</i> for <i>t</i>	
	12.5 = 5 + 2t so $t = 3.75$ so 3.75 s	A1	cao	3
(ii)	$2000 - R = 1000 \times 1.4$	M1	N2L. Accept $F = mga$. Accept sign errors. Both forces present. Must use $a = 1.4$	
	R = 600 so 600 N (AG)	E1		
(iii)	$2000 - 600 - S = 1800 \times 0.7$	M1	N2L overall or 2 paired equations. $F = ma$ and use 0.7. Mass must be correct. Allow sign errors and	
	S = 140 so 140 N (AG)	A1 E1	600 omitted. All correct Clearly shown	
(iv)	$T - 140 = 800 \times 0.7$	M1	N2L on trailer (or car). $F = 800a$ (or $1000a$). Condone missing resistance otherwise all forces present. Condone sign errors.	
	T = 700 so 700 N	B1 A1	Use of 140 (or 2000 – 600) and 0.7	3
(v)	N2L in direction of motion car and trailer			
	-600 - 140 - 610 = 1800a	M1 A1	Use of $F = 1800a$ to find new accn. Condone 2000 included but not T . Allow missing forces. All forces present; no extra ones Allow sign errors.	
	a = -0.75	A1	Accept ± . cao.	
	For trailer $T - 140 = -0.75 \times 800$	M1	N2Lwith their $a \neq 0.7$ on trailer or car. Must have correct mass and forces. Accept sign errors	
	so $T = -460$ so 460	A1	cao. Accept ±460	
	thrust	F1	Dep on M1. Take tension as +ve unless clear other convention	
-Ph)	sicsAndMathsTutor.com total	17		6

2	(i)	$s = ut + \frac{1}{2}at^2$	M1	Substitution required
		$s = ut + \frac{1}{2}at^{2}$ $7.2 = \frac{1}{2} \times a \times 6^{2}$ $a = 0.4 \text{ ms}^{-2}$	A1	
		$a = 0.4 \text{ ms}^{-2}$	A1	Cao
			[3]	
	(ii)	F = ma	M1	Attempt at Newton's second law
	, ,		M1	Attempt at resolving both S and T
		$300\cos 30^{\circ} + 175\cos 15^{\circ} - R = 1000 \times 0.4$	A1	(Correct elements present and no extras); follow through for a
		$R = 28.8 \mathrm{N}$	A1	Cao
			[4]	
	(iii)	The resistance perpendicular to the line of motion has been	B1	Allo
	(111)	ignored.	Di	There is also a sideways resistance force
			[1]	-

	Questio	Answer	Marks	Guidance	
3	(i)	Either $s = \frac{1}{2}(u+v)t$ Take O as the origin.	M1	Use of one relevant equation, including substitution	
		$30 = \frac{1}{2} \times (u+9) \times 10$			
		u = -3	A1		
		v = u + at	M1	Use of a second relevant equation including substitution	
		9 = -3 + 10a			
		a = 1.2	A1		
		$\mathbf{or} \ \ v = u + at \implies u + 10a = 9$	M1	Use of one relevant equation, including substitution	
		$s = ut + \frac{1}{2}at^2 \implies u + 5a = 3$	M1	Use of a second relevant equation including substitution	
		Solving simultaneously: $a = 1.2$	A1		
		u = -3	A1		
		or $s = vt - \frac{1}{2}at^2$	M1	Use of one relevant equation, including substitution	
		$\Rightarrow a = 1.2$	A1		
		v = u + at	M1	Use of a second relevant equation including substitution	
		$\Rightarrow u = -3$	A1		
			[4]		
	(ii)	Either $s = ut + \frac{1}{2}at^2$			
		Solving for P: $-5 = -3t + \frac{1}{2} \times 1.2t^2$	M1	Quadratic equation with $s = -5$	
		$0.6t^2 - 3t + 5 = 0$			
		Discriminant = $3^2 - 4 \times 0.6 \times 5 = -3$	M1	Considering the discriminant or equivalent	
		No real roots for $t \implies P$ article is never at P)	E1	Cao without wrong working in the whole question.	
	L				

Question		Answer	Marks	Guidance
		Or Find when $v = 0$	M1	
		$v = u + at$, $v = 0 \implies t = 2.5$		
		$s = ut + \frac{1}{2}at^2$ and $t = 2.5$	M1	Or use $v^2 = u^2 + 2as$
		$\Rightarrow s = -3.75 > -5$	E1	Cao without wrong working in the whole question. Comparison necessary
		Special cases when their $u > 0$ and their $a > 0$	SC1 SC1	"It is always going to the right" Demonstration that it is at –5 for two negative times.
			[3]	

		mark		Sub
4(i)	$14 = 2u + 0.5a \times 4$ $19 = u + 5a$ Solving gives $u = 4$ and $a = 3$	M1 A1 A1 M1	U of appropriate <i>uvast</i> for either equn Any form y form Attempt at solution of 2 equns in 2 unknowns. At least one value found. Must have complete correct solution to their equns	
				5
(ii)	$19^{2} = 4^{2} + 2 \times 3 \times s \text{ or}$ $s = 4 \times 5 + 0.5 \times 3 \times 25$ $s = 57.5 \text{ so } 57.5 \text{ m}$	M1 A1	Use of appropriate <i>uvast</i> and their u , $a \& t = 5$. cao [Accept 50 if $t = 7$ instead of $t = 5$ in (i) for $2/2$]	2
				7